(18-2x^3+9x)-(4-x^2-3x^3+11x)

2 min read Jun 16, 2024
(18-2x^3+9x)-(4-x^2-3x^3+11x)

Simplifying the Expression: (18-2x^3+9x)-(4-x^2-3x^3+11x)

This article will guide you through the process of simplifying the expression: (18-2x^3+9x)-(4-x^2-3x^3+11x).

Step 1: Distribute the Negative Sign

First, we need to distribute the negative sign in front of the second set of parentheses. This means multiplying each term inside the parentheses by -1:

(18-2x^3+9x) + (-1)(4-x^2-3x^3+11x)

This simplifies to:

18 - 2x^3 + 9x - 4 + x^2 + 3x^3 - 11x

Step 2: Combine Like Terms

Now, we can combine the terms with the same variables and exponents.

  • x^3 terms: -2x^3 + 3x^3 = x^3
  • x^2 terms: + x^2 (only one term)
  • x terms: 9x - 11x = -2x
  • Constant terms: 18 - 4 = 14

Step 3: Write the Simplified Expression

Finally, combining all the simplified terms, we get the simplified expression:

x^3 + x^2 - 2x + 14

Therefore, the simplified form of the given expression (18-2x^3+9x)-(4-x^2-3x^3+11x) is x^3 + x^2 - 2x + 14.

Related Post


Featured Posts